Dampers for Main Injector/RR

Bill Foster, Dennis Nicklaus,
Warren Schappert, Dave Wildman,
Bill Ashmanskas (emeritus)
May '03

MI/RR Damper

- Digital Damper Design
- Hardware Status
- Beam Results
- ACNET/Control Interface
- Other Applications

All-Coordinate Digital Damper

Wide Variety of Beam Dampers Required in MI & Recycler

- 1) Transverse (X,Y) and Longitudinal
- 2) 53 MHz, 2.5 MHz, 7.5 MHz, and DC Beam
- 3) Single Bunches, Full Batches, Short Batches
- 4) Injection, Ramping, and Stored Beam
- 5) Pbar and Proton Directions (& different timing)

... plus unbunched DC Beam in Recycler...

Damper Operating Modes

	Booster		Main Inj.		Recycler		Tevatron	
	Pbar	P	Pbar	P	Pbar	P	Pbar	P
53 MHz Full Batches		X		X		O		
53 MHz Short Batches			X	X				
53 MHz Coalesced Bunch			X	X			X	X
2.5 MHz Batch (4)			X	С	X	С		
7.5 MHz Batch (12)			X	С				
DC Beam					X	С		

 $\mathbf{X} = \mathbf{Operation}$

c = Commissioning & Tuneup

Damper Priorities in Main Injector & Recycler

- 1. Main Injector Longitudinal Dampers
- 2. Main Injector Transverse Dampers
- 3. Recycler Transverse Injection Dampers
- 4. Recycler Longitudinal Dampers
- 5. Recycler Broadband (DC Beam) Dampers

Advantages of Digital Filters

- Digital filters more reproducible (=>spares!)
- Inputs and Outputs clearly defined (& stored!)
 - filters can be developed & debugged offline
- Digital filter can also operate at multiple lower frequencies ...simultaneously if desired.
 - ? MI will not be blind for 2.5 and 7.5 MHz Beam
- Re-use Standard hardware with new FPGA code
 - or same code with different filter coefficients

What ADC Clock Speed is needed?

- ~53 MHz Bandwidth limited signal, sampled by 106 MHz ADC, measures <u>either</u> *in-phase* (cosine) <u>or</u> *quadrature* (sine) component
 - but not both ==> ADC clock phasing matters!
- 212 MHz sampling measures both in-phase and quadrature components. Phasing is not critical to determine vector magnitude.
- 212 MHz subuilt in phase measurement

Bandwidth Limit Signal

- Raw signal has high-frequency components which can cause signal to be missed by ADC
 - "Aliasing"
- Bandwidth limited signal (to ~50 MHz) so cannot be missed by 212 MHz ADC
- Eliminate low-frequency ripple, baseline shifts, etc. with Transformer or AC coupling
 - Digital Filtering can provide additional rejection

212 MHz Sampling of RWM Pulse

Low-pass Filter Spreads signal +/-5ns in time so it will not be missed by ADC

Reduces ADC
Dynamic Range
requirement,
since spike
does not have
to be digitized

212 MHz Sampling of Stripline Signal

Filter Spreads signal +/-5ns in time so it will not be missed by ADC

Signal
difference from
points (A-B)
has no firstorder sensitivty
to phase errors

Repetitive Waveform looks like simple sine wave, but contains bunch-by-bunch phase and amplitude

"A - B" gives bunch-by-bunch "in-phase" signal

"D - (C+E)/2"
gives
bunch-by-bunch
"out-of-phase"
or "quadrature"
signal

Vector Sum
sqrt(I**2 +Q**2)
is insensitive to
clock jitter

Echotek Card Used for Initial Dampers

EIGHT CHANNEL ANALOG TO DIGITAL CONVERTER WITH DIGITAL RECEIVER

ECDR-814/X-AD

FEATURES

- * 8 IF INPUTS
- * SIMULTANEOUS SAMPLING
- * EIGHT ANALOG TO DIGITAL CONVERTERS (ANALOG DEVICES AD6644, 14 BIT, 65 MSPS) 105 MSPS AD6645
- * SFDR > 90 dB FS
- * HEADER INSERTION
- * VME 64X, SINGLE SLOT
- * RACE++ OUTPUT
- * AVAILABLE AS A/D CONVERTER AS AN 8, 4, OR 2 CHANNEL MODULE
- * VARIABLE GAIN (~ -10 TO +20 dB) OR LOW PASS FILTER

·Prieto, Meyer et. al. evaluating 65MHz DDC for RR BPM upgrade

·Asmanskas, Foster, Schappert testing 105 MHz version for RR Dampers

(S. Hansen/ PPD) due this week

Butchering the Echotek Board

- Scorched-Earth FPGA rewrite (GWF)
 - − ~65 pages of firmware since Jan '03
- 212 MHz DAC Daughtercard
 - Sten Hansen & T. Wesson (PPD)
 - 3 channels for X,Y,Z
- 200 MHz Output FIR (W. Schappert, RFI)
 - Pre-emphasis compensation for analog outputs
 - Prototype for 424 MHz output on final board
- Input Buffer Amp/Splitter Box (Brian Fellenz,RFI)

ACNET CONTROLS

- Damper must behave differently for different bunches
 bunch-by-bunch RAM
 - Specifies Damper Gain, anti damp, noise
 injection, pinging, etc. on bunch-by-bunch basis.
- Damper must behave differently on different MI cycles
 - Each control register becomes an ACNET Array
 Device indexed by MI State
 - Register contents switch automatically when MI
 State changes (D. Nicklaus)

ACNET Control Devices (>250 total)

```
_ | | | | | | | | |
PA:I34 INT MON PARAM<NoSets>
                                                 A/D Com-U *COPIES*
 -<FTP>+ *SA* X-A/D X=TIME
                               Y=E:DYR01G, E:DYR02G, E:DTS01G, E:DTS02G
                               I= 475.16 , 473.9 , 303.2 , 303.47
  OMMAND ---- Volts I= 0
 < 1>+ One+ AUTO F= 600
                               F= 475.19 , 473.93 , 303.23 , 303.5
fbi.... sbd.... 8gev... ibeam's tune... ipm.... toroid DAMPERS
 I:DDCMSS Damper MI State Selec 🕛
 ! DIGITAL DAMPER MAIN CONTROLS
 ! MASTER ENABLE SWITCH 1=ON, 0=OFF
              Damper On/Off Switch 0
                                                            1=on
 ! MI STATE SELECT (SINGLE USER)
 I:DDCMSS
              Damper MI State Selec 0
 I:DDCMIS
              Damper MDAT MI State
 ! DAMPER ENABLE/MUTE [0:30]  0=OFF, 1=MUTE, 2=ON
              X Dampr Enable/Mute
 I:DDXDEN
              Y Dampr Enable/Mute
 I: DDYDEN
 I:DDZDEN
              Z Dampr Enable/Mute
 !DAMPER ACTIVE VARIABLE
 I:DDXACT
              X Dampr Active
 I: DDYACT
              Y Dampr Active
 I:DDZACT
              Z Dampr Active
 ! BEAM RF STRUCTURE DAMPER IS EXPECTING
 I:DDXRFT
              X Dampr RF Type
 I:DDYRFT
              Y Dampr RF Type
 I:DDZRFT
              Z Dampr RF Type
 -I:DDXDEN[3] X Dampr Enable/Mute
 -I:DDXDEN[25] X Dampr Enable/Mute
-I:DDYDEN[3] Y Dampr Enable/Mute
-I:DDYDEN[25] Y Dampr Enable/Mute
 I:DDZDEN[3] Z Dampr Enable/Mute
 I:DDZDEN[25] Z Dampr Enable/Mute
Java Applet Window
```

- Master control registers & diagnostics are typically single devices
- Configuration control registers are array devices indexed by MI State

```
PA:I34 INT MON PARAM<NoSets>
                                                                          _ | D | X |
                                          SET D/A A/D Com-U *COPIES*
-<FTP>+ *SA* X-A/D X=TIME Y=E:DYR01G, E:DYR02G, E:DTS01G, E:DTS02G
COMMAND --- Volts I= 0 I= 475.16 , 473.9 , 303.2 , 303.47
-< 2>+ One+ AUTO F= 600 F= 475.19 , 473.93 , 303.23 , 303.5
fbi.... sbd.... 8qev... ibeam's tune... ipm.... toroid DAMPERS
-I:DDCMSS Damper MI State Selec 0 0
 !DAMPER THRESHOLDS AND DIAGNOSTICS
 !THRESHOLD FOR 'BEAM PRESENT' ON RWM [0:30]
-I:DDZTHP Z Dampr Thresh Beam P 0
 ! THRESHOLD FOR BEAM KICKED [0:30]
-I:DDXTHK X Dampr Thresh to Kic O
-I:DDYTHK Y Dampr Thresh to Kic O
-I:DDZTHK Z Dampr Thresh to Kic O
 INUMBER OF BUNCHES PRESENT ABOVE THRESHOLD
 I:DDYNPR Y Dampr Nbr Bunches P 0
I:DDZNPR Z Dampr Nbr Bunches P 0
                                                                       Bnch
                                                                       Bnch
 I:DDZNPR Z Dampr Nbr Bunches P
                                                                       Bnch
 ! NUMBER OF BUNCHES KICKED (INCL. PINGER)
I:DDXNKI X Dampr Nbr Bunches K 0
I:DDYNKI Y Dampr Nbr Bunches K 0
I:DDZNKI Z Dampr Nbr Bunches K 0
                                                                       Bnch
                                                                       Bnch
                                                                       Bnch
Java Applet Window
```

PA:I34 INT MON PARAM<NoSets> _ | | | | | | | | SET D/A A/D Com-U *COPIES* -<FTP>+ *SA* X-A/D X=TIME Y=E:DYR01G, E:DYR02G, E:DTS01G, E:DTS02G COMMAND ---- Volts I= 0 I= 475.16 , 473.9 , 303.2 , 303.47 -<5>+ One+ AUTO F= 600 F= 475.19 , 473.93 , 303.23 , 303.5 fbi.... sbd.... 8qev... ibeam's tune... ipm.... toroid DAMPERS -I:DDCMSS Damper MI State Selec 0 ! DAMPER TIMER DEVICES ! TIME BASE (NONEXISTS) -I:DDXTBA X Dampr Time Base 0 -I:DDYTBA Y Dampr Time Base 0 -I:DDZTBA Z Dampr Time Base 0 !DAMPER FIRST TURN [0:30] 21 BITS -I:DDXD1T X Dampr 1st Turn Acti 0 Turn -I:DDYD1T Y Dampr 1st Turn Acti O -I:DDZD1T Z Dampr 1st Turn Acti O Turn Turn !DAMPER LENGTH IN TURNS [0:30] 21 BITS -I:DDXDLT X Dampr Length in Tur 0 Turn -I:DDYDLT Y Dampr Length in Tur 0 Turn -I:DDZDLT Z Dampr Length in Tur 0 Turn 1 DAMPER TURNCOUNTER SINCE MI RESET (NEEDS DDXBKO) I:DDXTCR X Dampr Turns since R I:DDYTCR Y Dampr Turns since R I:DDZTCR Z Dampr Turns since R Turn 223076 Turn 223076 Turn 1 DAMPER TURNS ACTIVE COUNTER X Dampr Active Turns I:DDXDTA Turn I:DDYDTA Y Dampr Active Turns Turn I:DDZDTA Z Dampr Active Turns Turn !NUMBER OF MI RESETS -I:DDXNMR X Dampr MI 19143 19156 19156 -I:DDYNMR Y Dampr MI 19144 -I:DDZNMR Z Dampr MI 19133 19157 19157 19146 19146 Java Applet Window

```
PA:I34 INT MON PARAM<NoSets>
                                                          _ | | | | | | | |
                                 SET D/A A/D Com-U *COPIES*
-<FTP>+ *SA* X-A/D X=TIME Y=E:DYR01G,E:DYR02G,E:DTS01G,E:DTS02G
COMMAND ---- Volts I= 0 I= 475.16 , 473.9 , 303.2 , 303.47
-< 6>+ One+ AUTO F= 600 F= 475.19 , 473.93 , 303.23 , 303.5
fbi.... sbd.... 8qev... ibeam's tune... ipm.... toroid DAMPERS
-I:DDCMSS Damper MI State Selec 0 0
 1 DAMPER KICK TIMING
 ! BUCKET O POSITION ADJUST [0:30]
-I:DDXBKO X Dampr Bucket O Pos. 0
                                                       Bkt.
-I:DDYBKO Y Dampr Bucket O Pos. 0
                                                       Bkt.
-I:DDZBKO Z Dampr Bucket O Pos. O
                                                       Bkt.
 ! KICK DELAY REGISTER [0:30]
-I:DDXKDL X Dampr Kick Delay 0
                                                       Bkt.
-I:DDYKDL Y Dampr Kick Delay 0
-I:DDZKDL Z Dampr Kick Delay 0
                                                       Bkt.
                                                       Bkt.
 1 MOMENTUM-DEPENDENT KICK DELAY LOOKUP (NONEXISTS)
             X Dampr Kick Delay Ta 0
-I:DDXKDR
-I:DDXKDR[1] X Dampr Kick Delay Ta 0
-I:DDYKDR Y Dampr Kick Delay Ta 0
-I:DDYKDR[1] Y Dampr Kick Delay Ta 0
-I:DDZKDR Z Dampr Kick Delay Ta 0
-I:DDZKDR[1] Z Dampr Kick Delay Ta 0
 ! KICKER OUTPUT PREEMPHASIS FILTER COEF. (NONEXISTS
-I:DDXPEC X Dampr PreEmphasis C 0
-I:DDXPEC[1] X Dampr PreEmphasis C 0
-I:DDXPEC[2] X Dampr PreEmphasis C 0
-I:DDXPEC[3] X Dampr PreEmphasis C 0
            Y Dampr PreEmphasis C 0
-I:DDYPEC
-I:DDYPEC[1] Y Dampr PreEmphasis C 0
-I:DDYPEC[2] Y Dampr PreEmphasis C 0
-I:DDYPEC[3] Y Dampr PreEmphasis C 0
-I:DDYPEC[4] Y Dampr PreEmphasis C 0
             Z Dampr PreEmphasis C 0
-I:DDZPEC
-I:DDZPEC[1] Z Dampr PreEmphasis C 0
Java Applet Window
```

```
8 PA:I34 INT MON PARAM<NoSets>
                                                       _ 🗆 x
                                     D/A A/D Com-U *COPIES
                               SET
                        Y=E:DYR01G,E:DYR02G,E:DTS01G,E:DTS02G
-<FTP>+ *SA* X-A/D X=TIME
-< 7>+ One+ AUTO F= 600 F= 475.19 , 473.93 , 303.23 , 303.5
fbi.... sbd.... 8qev... ibeam's tune... ipm.... toroid DAMPERS
            Damper MI State Selec 0
! BEAM PINGER CONTROL REGISTERS
! PINGER ENABLE/MUTE[0:30] 0=OFF, 1=MUTE, 2=ON
            X Dampr Pinger Ena/Mu 0
-I:DDXPEN
-I:DDYPEN Y Dampr Pinger Ena/Mu 0
            Z Dampr Pinger Ena/Mu 0
-I:DDZPEN
! PINGER TUNE REGISTER [0:30] PARTS PER 1E6
            X Dampr Pinger Tune
-I:DDXPTU
-I:DDYPTU Y Dampr Pinger Tune 0
         Z Dampr Pinger Tune 0
-I:DDZPTU
1 PINGER TUNE COUNTER
            X Dampr Pinger Tune C
 I:DDXPTC
I:DDYPTC
I:DDZPTC
            Y Dampr Pinger Tune C
            Z Dampr Pinger Tune C
 1 PINGER TUNE BIT
            X Dampr Pinger Tune B
 I:DDXPBI
I:DDYPBI Y Dampr Pinger Tune B
            Z Dampr Pinger Tune B
 I:DDZPBI
! PINGER GAIN REGISTER (NONEXISTS)
            X Dampr Pinger Gain
-I:DDXPGA
            Y Dampr Pinger Gain
I:DDYPGA
                                0
            Z Dampr Pinger Gain
I:DDZPGA
 ! PINGER MODE AND PINGER XOR REGS (NONEXIST)
            X Dampr Pinger Mode
I:DDXPMO
            Y Dampr Pinger Mode
-I:DDYPMO
            Z Dampr Pinger Mode
                                 0
I:DDZPMO
            X Dampr Pinger XOR
-I:DDXPXO
            Y Dampr Pinger XOR
                                 0
-I:DDYPXO
-I:DDZPXO
            Z Dampr Pinger XOR
Java Applet Window
```

```
PA:I34 INT MON PARAM<NoSets>
                                                        _ 🗆 🗙
                                      D/A A/D Com-U *COPIES
-<FTP>+ *SA* X-A/D X=TIME
                            Y=E:DYR01G, E:DYR02G, E:DTS01G, E:DTS02G
-< 8>+ One+ AUTO F= 600 F= 475.19 , 473.93 , 303.23 , 303.5
fbi.... sbd.... 8qev... ibeam's tune... ipm.... toroid DAMPERS
            Damper MI State Selec 0
! BEAM PINGER TIMER REGISTERS
 1 PINGER ACTIVE SIGNAL
I:DDXPAC X Dampr Pinger Active
I:DDYPAC Y Dampr Pinger Active
I:DDZPAC
            Z Dampr Pinger Active
! PINGER 1ST TURN TO ACTIATE
-I:DDXP1T X Dampr Pinger 1st Tu 0
-I:DDYP1T Y Dampr Pinger 1st Tu 0
-I:DDZP1T Z Dampr Pinger 1st Tu 0
 ! PINGER LENGTH IN TURNS TO STAY ACTIVE
            X Dampr Pinger Len.Tu 0
-I:DDXPLT
-I:DDYPLT Y Dampr Pinger Len.Tu 0
-I:DDZPLT Z Dampr Pinger Len.Tu 0
!PINGER 1ST BUCKET TO HIT
-I:DDXP1B X Dampr Pinger 1st Bk 0
-I:DDYP1B Y Dampr Pinger 1st Bk 0
            Z Dampr Pinger 1st Bk 0
-I:DDZP1B
 ! PINGER LENGTH IN BUCKETS TO HIT
            X Dampr Pinger Leng.
                                 0
-I:DDXPLB
-I:DDYPLB
-I:DDZPLB
            Y Dampr Pinger Leng. 0
            Z Dampr Pinger Leng. 0
 ! PINGER ACTIVE TURNCOUNTER
            X Dampr Pinger Turnco
I:DDXPAT
I:DDYPAT Y Dampr Pinger Turnco
I:DDZPAT Z Dampr Pinger Turnco
Java Applet Window
```

```
PA:I34 INT MON PARAM<NoSets>
                                                          _ | | | | | | | |
                                 SET D/A A/D Com-U *COPIES*
I34 MI60 2.5MHZ BPMS
-<FTP>+ *SA* X-A/D X=TIME Y=E:DYR01G, E:DYR02G, E:DTS01G, E:DTS02G
COMMAND ---- Volts I= 0 I= 475.16 , 473.9 , 303.2 , 303.47
-<10>+ One+ AUTO F= 600 F= 475.19 , 473.93 , 303.23 , 303.5
fbi.... sbd.... 8qev... ibeam's tune... ipm.... toroid DAMPERS
-I:DDCMSS Damper MI State Selec 0
! FIFO DAQ CONTROL REGISTERS
! DAQ REQUEST REGISTER [0:30] 1-BIT
-I:DDXQRQ X Dampr DAQ Request B 0
-I:DDYQRQ Y Dampr DAQ Request B 0
-I:DDZQRQ Z Dampr DAQ Request B 0
 1 DAQ REQUEST STATUS REG: 0=IDLE,1=PENDING,2=ACTIV
I:DDXQRS X Dampr DAQ Req. Stat
I:DDYQRS Y Dampr DAQ Req. Stat
I:DDZQRS Z Dampr DAQ Req. Stat
 ! DAO FIFO#0: NOT A GOOD IDEA TO PUT THESE ON PAGE
 !I:DDXQF0 X Dampr DAQ FIFO 0 -1
 !I:DDYQF0 Y Dampr DAQ FIFO 0 -1
                                             -1
 !I:DDZQF0 Z Dampr DAQ FIFO 0 -1
                                              -1
 ! FIFO #1
 !I:DDXQF1 X Dampr DAQ FIFO 1 -1
 !I:DDYQF1 Y Dampr DAQ FIFO 1 -1
 II: DDZQF1 Z Dampr DAQ FIFO 1
                                  -1
                                              -1
! DAQ MUX CONTROL REGISTER [0:30]
-I:DDXQM1 X Dampr DAQ Mux 0
-I:DDYQM1 Y Dampr DAQ Mux
                                  0
-I:DDZQM1 Z Dampr DAQ Mux
                                  0
```

25-page User's Manual

• ...and counting.

• We are in the market for guinea pigs to test the documentation on.

• Plan is to have comprehensive self-test and calibration software.

Damper Display GUI (Matlab) - W. Schappert

Other Displays Used:

- D27 (provides real-time scope of RWM)
- Guan Wu's Array Display/File Write
- ACL Script writing text file
 - Help from Brian Hendricks and Dennis Nicklaus
 - **Excel**iscope"

Longitudinal RAW ADC Waveform

Wall-Current Monitor @212 MHz "Virtual Oscilliscope" in FPGA Firmware

8

Transverse Waveform (H602?)

Bunch by Bunch Time History

Longitudinal In-Phase vs. Bunch Number

Bunch-By-Bunch Phase

(Longitudinal Quadrature Signal) VS. Turn Number

Longitudinal Filter

8-May

Raw Waveform for Undamped, Damped and Anti-Damped Bunches (transverse)

Filter for Undamped, Damped, and Anti-Damped Bunches

Blowing Selected Bunches out of the Machine (in X,Y, or both)

Kick for Undamped, Damped and Anti-Damped Bunches

8-May-03

Undamped, Damped, and Anti-Damped Bunches

8-May-

No Damping

Anti-Damping

(active for selected bunches on turns $150 \approx 350$)

8-1

Bunch-By-Bunch Damping

Simultaneous X and Y Damping

Transverse Amplifier Situation

- Existing Transverse Amplifiers cannot provide clean bunch-by-bunch kick
- Alternative ENI Amps have ~2/3 voltage but slew-rate limits
- Overdriving the ENIs (~saturated switches) provided a workable system in short term
- Possibly we want to buy better amps in long term, (or digital switch drivers)

Existing INTECH Amps

oster

SWITCHED TO "SPARE" ENI AMPS

Foster

Longitudinal Beam Instability in MI

see Dave Wildman's Talk

- Driven by cavity wake fields within bunch train
- Seeded by Booster & amplified near MI flat top.

Longitudinal Damper Broadband RF Cavities 3 New Cavities, Similar to Recycler, With Superior HF Response - (*Wildman*)

Figure 1: Schematic drawing of Recycler Wideband RF Cavity

Non-Resonant Cavity looks like 50-Ohm Load in parallel with a large Inductor

Wideband Power Amplifiers

- Recycler has four of these amps, capable of generating +/-2000V or arbitrary waveform.
- MI (D. Wildman) ordered 3 more for longitudinal Dampers, due May~June.
- Claim is still on schedule

Figure 2: Front and Rear views of Amplifier Research model 3500A100.

ampers - G. W. Foster

Pbars vs. Proton Timing: Longitudinal

- 3 Cavites spanning 5-10 meters
- Bunch-by-bunch kick needs separate fanout for Protons and Pbars
- Either:
 - One DAC per Cavity
 - Relay switch box with different cable delays

 ≥ this option chosen ≥ single TTL bit Pbar-P
 - Parts in (Dave Wildman's) hands

Longitudinal Damper in Main Injector

- 1. Benefits to Bunch Coalescing for Collider
 - "Dancing Bunches" degrade Proton coalescing and ?
 - Affects Lum directly (hourglass) and indirectly (lifetime)
 - We are deliberately blowing? in Booster
- 2. Benefits for Pbar Stacking Cycles
 - Bunch Rotation is generally turned off! (x1.5 stack rate?)
 - Slip-Stacking etc. (Run IIb) will require stable bunches
- 3. Needed for eventual NUMI operation

Longitudinal Damper Works by Modulating Phase of RF Zero Crossing

Damping of Bunch Motion by Modulation of Center of Rotation (RF zero-crossing) on Alternate Half-cycles of Synchrotron Motion

Numerical Examples for Longitudinal Dampers

	MI at Injection	Recycler
RF Voltage	1000 kV	2 kV
Damper Voltage	0.6 kV	0.1 kV
RF frequency	53 MHz	2.5 MHz
Sychrotron Freq.	870 Hz	8.5 Hz
Damping Time for	145 periods	1.7 periods
20 degree phase osc.	0.17 sec.	0.21 sec.

Damping can be made faster by raising V_{DAMPER} and/or lowering V_{RF}

8-May-03

Longitudinal Damper FPGA Logic

Individual Bunches are kicked + or - depending on whether they are moving right or left in phase

FPGA Code for Universal Damper (8-turn Filter)

```
-- 7-Turn Delay Storage for 8-turn filter using altshift taps megafunction (RAM-based shift register)
-- shift register length between taps is Main Injector/Recycler Harmonic number (588)
() = turn delay : altshift taps() with (NUMBER OF TAPS=7, WIDTH=15,
    TAP_DISTANCE=588) returns(.taps[0]); -- # of stages between taps = # of bunches in ring turn_delay.clock = adclkby2; -- megafunction 2-stage pipelined by 53 MHz clock turn_delay.shiftin[] = Qch1.q[14..0]; -- shiftreg input is Zero-turn delay signal
-- Multiply & Add pipelined megafunctions to get 8-turn weighted sum for FIR filter
-- Four multipliers and adders in each pipelined megafunction, two megafunctions for 8 total multipliers
-- first multiplier/adder for turns n,n-1,n-2,n-3
() = Mpy Add : altmult add()
                                        with (NUMBER OF MULTIPLIERS=4, WIDTH A=15, WIDTH B=4, WIDTH RESULT=21,
                                               REPRESENTATION A="SIGNED", REPRESENTATION B="SIGNED",
                                               INPUT REGISTER AO="CLOCKO", INPUT REGISTER A1="CLOCKO",
                                               INPUT REGISTER A2="CLOCKO", INPUT REGISTER A3="CLOCKO",
                                               INPUT REGISTER BO="CLOCKO", INPUT REGISTER B1="CLOCKO",
                                               INPUT REGISTER B2="CLOCKO", INPUT REGISTER B3="CLOCKO")
                                        returns(.result[0]); -- 1-bit dummy, actually returns nothing
    Mpy_Add.datab[15..0] = FIR_coeffs[15..0]; -- multiply by four 4-bit signed numbers from VME control registers
    Mpy Add.dataa[14..0] = Qch1.q[14..0];
                                                           -- zero turn delay is multiplier port AO
    Mpy Add.dataa[59..15] = turn delay.taps[44..0]; -- 1,2, and 3 turn delays are multiplier ports A1,A2,A3
    Mpy Add.clock0 = adclkby2;
                                                             -- pipelined result comes out 3 clocks later
-- second multiplier/adder for turns n-4,n-5,n-6,n-7
() = Mpy Add2
                  : altmult add()
                                             with (NUMBER OF MULTIPLIERS=4, WIDTH A=15, WIDTH B=4, WIDTH RESULT=21,
                                               REPRESENTATION A="SIGNED", REPRESENTATION B="SIGNED",
                                               INPUT REGISTER AO="CLOCKO", INPUT REGISTER A1="CLOCKO",
                                               INPUT REGISTER A2="CLOCKO", INPUT REGISTER A3="CLOCKO",
                                               INPUT REGISTER BO="CLOCKO", INPUT REGISTER B1="CLOCKO",
                                               INPUT REGISTER B2="CLOCKO", INPUT REGISTER B3="CLOCKO")
                                        returns(.result[0]); -- 1-bit dummy, actually returns nothing
    Mpy Add2.datab[15..0] = FIR coeffs[31..16];
                                                           -- multiply by four 4-bit signed numbers from VME control registers
    Mpy Add2.dataa[59..0] = turn delay.taps[104..45]; -- 4,5,6, and 7 turn delays are multiplier ports AO,A1,A2,A3
    Mpy Add2.clock0 = adc1kby2;
                                                              -- pipelined result comes out 3 clocks later
-- Add Damper results of both Multiply/Add megafunctions to get final result for 8-turn weighted sum
() = mpySum : lpm add sub() with (lpm width=22, lpm direction="add") returns (.cout);
    mpySum.dataa[20..0] = mpy_add.result[20..0]; -- add result of first four multipliers
mpySum.dataa[21] = mpy_add.result[20]; -- (sign extend)
mpySum.datab[20..0] = mpy_add2.result[20..0]; -- add result of second four multipliers
mpySum.datab[21] = mpy_add2.result[20]; -- (sign extend)
-- Output Register for calculated kick sum
() = DK: lpm ff (.data[] = mpySum.result[], .clock = adclkby2) with (lpm_width=22) returns (.q[0]);
```

All-Coordinate Digital Damper

Digital Signal Processing with FPGA's

- Commercial card from Echotek
 - 8 channels of 14-bit, 106 MHz Digitization
- One card does all dampers for one machine
- Customized FPGA firmware
 - Bill Ashmanskas
 - GW Foster
 - Warren Schappert...
- Handles Wide Variety of Bunch Structure

"Universal-Damper" Application: Signal Processing Steps (transverse)

1) Bandwidth-Limit input signal to ~53 MHz 14 Bit Digitization at 106 MHz or 212 MHz 3) FIR filter to get single-bunch signal4) Sum & Difference of plate signals Multi turn difference filter (FIR) w/delay Inside Pickup Mixing for correct Betatron Phase **FPGA** Bunch-by-bunch gain, dead band etc. Timing Corrections for Frequency Sweep Pre-Distortion for Kicker Power Amp 10) Power Amp for Kicker

New Damper Board (A. Seminov)

- SINGLE high-end FPGA (vs. 5 on Echotek)
- Four 212 MHz ADCs (vs. 106 MHz on Echotek)
- Four 424 MHz DACs (vs. 212 MHz on Echotek)
- Digital Inputs:
 - TCLK, MDAT, BSYNCH, 53 MHz, Marker
- Digital Outputs:
 - Pbar/P TTL, scope trigger, 1 GHz serial Links...
- "NIM module" with Ethernet interface to ACNET

Adding a new ACNET Device

1) Add register(s) to FPGA Firmware

```
-- TEST DEVICE -- captures Damper Filter output for bucket #23 for Fast-Time Plot

IF (dsel.q & addr[]==H"0088") THEN -- VME Address decode
datatri[]= lpm_ff( -- connect register to VME read data bus
.clock = adclkby2, -- clocked at 53 MHz
.enable = Bucket_Count==23, -- clock enabled when RF bucket counter=23
.data[] = Filter_Out_32_bit[]) -- data from filter output
with (LPM_WIDTH=32); -- register is 32 bits wide
```

- 2) Start Recompile (takes ~6 minutes)
- 3) Meanwhile, use DABBEL/D80 to define properties of new ACNET device
- 4) Download Firmware & Reboot Crate (~2 min.)
 - Takes about 10 minutes from concept to Fast-Time Plot

Other Applications of this Digital/FPGA Hardware Approach

- Universal BPM System
- Generic Instrumentation with shared Hardware/Software infrastructure
- God's Own Beam Loading Compensation
- Replacing Booster LLRF with one "Digital NIM" module

Replace NIM "Analog RF Modules" with Digital NIM modules with 212 MHz Digitization, FPGA signal processing, and Ethernet interface. Retain Crate/Cabling infrastructure.

Single-Bunch BPM Measurement was tested by blowing out nearby bunches during Stacking Cycle

Booster Low-Level RF.

The Final Frontier.

